Medical Anesthesia


Xenon has been used as a general anesthetic. Although it is expensive, anesthesia machines that can deliver xenon are about to appear on the European market, because advances in recovery and recycling of xenon have made it economically viable.
Two physiological mechanisms for xenon anesthesia have been proposed. The first one involves the inhibition of the calcium ATPase pump—the mechanism cells use to remove calcium (Ca2+)—in the cell membrane of synapses. This results from a conformational change when xenon binds to nonpolar sites inside the protein. The second mechanism focuses on the non-specific interactions between the anesthetic and the lipid membrane.
Xenon has a minimum alveolar concentration (MAC) of 72% at age 40, making it 44% more potent than N2O as an anesthetic. Thus it can be used in concentrations with oxygen that have a lower risk of hypoxia. Unlike nitrous oxide (N2O), xenon is not a greenhouse gas and so it is also viewed as environmentally friendly.[128] Xenon vented into the atmosphere is being returned to its original source, so no environmental impact is likely